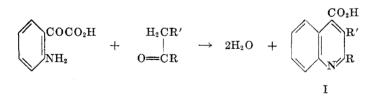
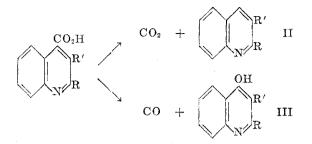
[CONTRIBUTION FROM THE DEPARTMENT OF ORGANIC CHEMISTRY, RADIUM INSTITUTE, UNIVERSITY OF PARIS]

THE PFITZINGER REACTION IN THE SYNTHESIS OF QUINOLINE DERIVATIVES


NG. PH. BUU-HOÏ, R. ROYER, NG. D. XUONG, AND P. JACQUIGNON

Received March 26, 1953


In the framework of a broad investigation into the experimental production, by pure chemical substances, of precancerous conditions and tumors of the liver, the group of quinoline compounds has come especially to our attention. Quinoline itself is a substance of pronounced general toxicity toward both animals (1) and plants (2), and in some of its homologs, such as quinaldine and lepidine, these toxic properties are enhanced. In small doses, 2,6-dimethylquinoline has a growth-accelerating effect on certain plant tissues (3). More directly pertaining to cancer problems are the observation by Shear (4) that quinaldine accentuates the carcinogenic action of 3,4-benzpyrene, and numerous works on the production of sarcomas (5) with 2-(p-aminostyryl)-6-(p-acetaminobenzoylamino)quinoline methoacetate ("Styryl 430"). 2-Phenylcinchoninic acid ("Atophan") in high dosage and in susceptible subjects, readily produces a degeneration of the liver tissue similar to the action of azo-dyes in early stages of carcinogenesis.

These considerations led us to synthesize a large number of diversely substituted cinchoninic acids and quinolines, for biological testing as potential liver poisons. Attention is also being paid to the possibility that compounds wholly inactive with respect to epithelioma or sarcoma production, may enhance the occurence of lung tumors (6).

The method used throughout for synthesizing these quinoline derivatives was the Pfitzinger reaction, involving condensation in alkaline medium of an isatin with a ketone of the general formula $\text{RCOCH}_2\text{R}'$ (7):

Decarboxylation of the 2-substituted cinchoninic acids (I) thus obtained, which was readily effected by heating them above their melting points, and vacuum-distillation of the residues, yielded in most cases the corresponding 2substituted quinolines (II). In a few instances, observed mostly in the 2-alkylcinchoninic acids, decarboxylation was accompanied by a decarbonylation (8) which gave the corresponding 4-hydroxyquinolines (III):

Whereas the Pfitzinger reaction is very convenient for syntheses in the quinoline group, in view of the ease of its technique and the ready availability of intermediates, its high sensitivity toward steric hindrance presents a serious disadvantage. This phenomenon is known to produce abnormal courses of reaction, and greatly reduces or even nullifies the yield of the expected cinchoninic acids. Thus, except for methyl ethyl ketone, ketones of the type CH_3COCH_2R in the aliphatic series react preferentially through their methyl group (9), to give 2alkylcinchoninic acids, whereas in most other reactions, such as formation of indoles, or halogenation, the methylene group is the more active (10). In the aromatic series, ketones of the type $ArCO(CH_2)_nCH_3$ give a Pfitzinger reaction with isatin, under normal conditions of time and temperature, only when n is less than 3 (11). Homologs of n-butyrophenone, such as caprophenone, are able to react to a sizable extent, only when the aryl radicals are very simple and the duration of reactions greatly prolonged (12).

These recorded observations on the effect of steric hindrance in Pfitzinger reactions have been confirmed and extended in the course of the present study.

The ketones used in the Pfitzinger reactions involved in this work fall into three categories: (a) aliphatic ketones; (b) alicyclic ketones; (c) aromatic and heterocyclic ketones. The isatins brought to condensation with these ketones were isatin itself, 5- and 7-methylisatin, 5-chloro- and 5-bromo-isatin, and β naphthisatin.

1. Pfitzinger reactions with aliphatic ketones. The aliphatic ketones used can be divided into two classes: (a) the methyl ketones of the general formula RCOCH₃, whose reaction is expected for steric reasons to involve the —COCH₃ part of the molecule, and the dialkyl ketones of formula RCH₂COR', in which R' is a secondary alkyl group, whose reaction necessarily involves the —COCH₂— part of the molecule. The various new alkylcinchoninic and 2,3-dialkylcinchoninic acids thus obtained are listed in Table I, and the corresponding quinolines and their picrates in Table II. Further proof of the selective reactivity of the methyl group in ketones RCOCH₃ was the identification of the acids from the Pfitzinger reaction between β -naphthisatin and octan-2-one and undecan-2-one respectively, with the 2-n-hexyl- and 2-n-nonyl-5,6-benzocinchoninic acids prepared by the Doebner condensation, with pyruvic acid and β -naphthylamine, of n-heptanal and n-decanal respectively (13).

(b) The unsymmetrical dialkyl ketones of general formula RCH₂COCH₂R',

			IVNI	ANALYSES			
SUBSTITUENT	м.е., °С.	Calc'd	c'd	Found	pu	FORMULA	STARTING KETONE
		c	Н	υ	H		
2^{-n} -Undecyl	129-130	76.0	8.8	76.2	8.9	$C_{21}H_{29}NO_2$	n-Undecyl methyl ketone
8-Methyl-2-n-undecyl	83-84	77.4	9.0	77.1	9.1	C ₂₂ H ₃₁ NO ₂	n-Undeeyl methyl ketone
2-n-Amyl	135	74.0	6.9	74.0	6.8	C ₁₅ H ₁₇ NO ₂	<i>n</i> -Amyl methyl ketone
6-Methyl-2-n-anyl	174	76.2	7.4	76.0	7.6	C ₁₆ H ₁₉ NO ₂	<i>n</i> -Amyl methyl ketone
6-Bromo-2-n-amyl	180	55.9	4.9	55.6	4.8	C ₁₅ H ₁₆ BrNO ₂	<i>n</i> -Amyl methyl ketone
6-Methyl-2-n-hexyl	135	75.2	2.7	75.0	7.7	C ₁₇ H ₂₁ NO ₂	<i>n</i> -Hexyl methyl ketone
6-Chloro-2-n-hexyl	143	65.9	6.1	65.6	6.2	C16H18CINO2	<i>n</i> -Hexyl methyl ketone
3-Methyl-2-n-hexyl	197	75.2	2.2	75.1	7.7	C ₁₇ H ₂₁ NO ₂	<i>n</i> -Hexyl methyl ketone
3-Ethyl-2-isobutyl	239	74.7	7.3	74.8	7.4	C ₁₆ H ₁₉ NO ₂	Isobutyl ethyl ketone
$3-n-Propyl-2-isobutyl^a$	205	75.2	7.7	75.0	7.9	CITH21NO2	Isobutyl <i>n</i> -propyl ketone
6-Bromo-3-methyl-2-n-pentadecyl	189	65.5	6.7	65.4	7.9	C ₂₆ H ₃₈ BrNO ₂	<i>n</i> -Pentadecyl ethyl ketone
2-Cyclopropyl	206	73.2	5.1	73.0	5.2	C ₁₃ H ₁₀ NO ₂	Cyclopropyl methyl ketone
8-Methyl-2-cyclopropyl	212 (dec. > 200)	74.0	5.7	73.9	5.9	C14H13NO2	Cyclopropyl methyl ketone
6-Chloro-2-eyelopropyl	230 (dec. > 220)	62.9	4.0	62.9	4.2	C ₁₃ H ₁₀ CINO ₂	Cyclopropyl methyl ketone
6-Bromo-2-cyclopropyl	268-270 (dec. > 252)	53.4	3.4	53.1	3.6	C ₁₃ H ₁₀ BrNO ₂	Cyclopropyl methyl ketone
6-Methyl-2, 3-pentamethylene	308 (dec. > 270)	75.2	6.6	75.1	6.4	C ₁₆ H ₁₇ NO ₂	Cycloheptanone
6-Bromo-2, 3-pentamethylene	309	56.2	4.3	56.2	4.5	C16H14BrNO2	Cycloheptanone
6-Chloro-2, 3-pentamethylene	251	65.4	5.0	65.6	5.1	C ₁₅ H ₁₄ CINO ₂	Cycloheptanone

TABLE I 2-Alkyl- and 2,3-Dialkylcinchoninic Acids

 $^{\alpha}$ The substance melted first at 176°, then resolidified, and melted again at 205°.

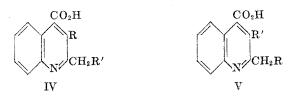
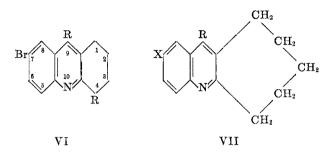

SUBSTITUENT	в.р., °С./мм.	ANAL	YSES	мр., °С.	FORMULA
	<u> </u>	Calc'd	Found	OF PICRATE	
2-n-Undecyl	233/14	4.9	4.9	83-84	$\mathrm{C}_{20}\mathrm{H}_{29}\mathrm{N}$
2-n-Undecyl-4-hydroxy	270-280/14	4.6	4.5	1	$C_{20}H_{29}NO$
8-Methyl-2-n-undecyl	235 - 238 / 14	4.7	4.9	76	$\mathrm{C}_{21}\mathrm{H}_{31}\mathrm{N}$
2-n-Amyl-4-hydroxy ^a	m.p. 128	6.5	6.3		$C_{14}H_{17}NO$
6-Bromo-2-n-amyl	207 - 208/14	5.0	4.8	192	$C_{14}H_{16}BrN$
6-Methyl-2-n-amyl	300-302	6.5	6.4	188-189	$C_{15}H_{19}N$
2-Cyclopropyl	145-148/17	8.2	8.0	175	$C_{12}H_{11}N$
6-Bromo-3-methyl-2-n-pentadecyl	m.p. 54–55	3.2	3.0	114	$C_{25}H_{38}BrN$
3-Methyl-2-n-pentadecyl	m.p. 55	3.9	3.6	105-106	$C_{25}H_{39}N$
3-Ethyl-2-isobutyl	298 - 300	6.5	6.3	160-161	$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{N}$
6-Chloro-2,3-pentamethylene	m.p. 109	5.7	5.5	191-192	$C_{15}H_{14}ClN$
6-Bromo-2,3-pentamethylene	m.p. 128	4.9	5.0	200-201	$C_{15}H_{14}BrN$
6-Methyl-2,3-pentamethylene	m.p. 105	6.3	6.2	189-190	$\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{N}$

 TABLE II

 2-Alkyl- and 2,3-Dialkylquinolines

^a Obtained as by-product in the preparation of the foregoing base; formed silky, colorless needles, m.p. 123°, from ethanol.


whose Pfitzinger reactions could a priori involve the methylene group on either side of the keto group, to yield either the cinchoninic acid (IV), or the cinchoninic acid (V), or both. Even in such complicated cases, the various alternatives seem often to be limited by steric hindrance. Thus, condensation of n-propyl isobutyl ketone with isatin gave only one reaction product, which, in the absence of rigid

structure-proof, might tentatively be assigned the constitution of 2-isobutyl-3ethylcinchoninic acid (IV; $R = C_2H_5$, $R' = iso-C_3H_7$), the methylene group of the isobutyl radical being assumed to be the more sterically hindered. For a similar reason, the reaction-product from isatin and *n*-butyl isobutyl ketone might be tentatively be termed 2-isobutyl-3-*n*-propylcinchoninic acid (IV; R = $n-C_3H_7$, $R' = iso-C_3H_7$). For dialkyl ketones such as *n*-decan-4-one, in whose molecules the two alkyl groups are less differentiated, it is more difficult to assign a formula to the cinchoninic acids actually isolated, although Pfitzinger reactions might possibly be thought to involve the smallest alkyl group to a greater extent, giving, for instance, with isatin, 3-ethyl-2-*n*-hexylcinchoninic acid (IV; $R = C_2H_5$, $R' = n-C_5H_{11}$) as the main product. Unfortunately, this point too has not yet been settled, in view of the difficulty of preparing unsymmetrical 2,3dialkylquinolines in a pure state for comparison.


PFITZINGER REACTION

2. Pfltzinger reactions with alicyclic ketones. Borsche (14) showed that cyclanones are highly responsive to Pfitzinger reactions, and Buu-Hoï (15) extended these observations to molecules as large as the musk-smelling cyclanones with fifteen and more carbon atoms in the ring. In the present work, 2-methyl- and 2-ethyl-cyclohexanone were found to condense readily with 5-bromoisatin, despite the presence of the ortho alkyl substituent. 7-Bromo-4-methyl- and 7-bromo-4-ethyl-1,2,3,4-tetrahydroacridine-9-carboxylic acid (VI; $R = CO_2H$) were thus prepared in good yield, and decarboxylated to the corresponding quinolines

(VI; R = H). Similar reactions performed with cycloheptanone afforded a series of 6-substituted 2,3-pentamethylenecinchoninic acids (VII; $R = CO_2H$ and 6-substituted 2,3-pentamethylenequinolines (VII; R = H).

An interesting ketone which also underwent Pfitzinger reactions smoothly was methyl cyclopropyl ketone; with isatin, 2-cyclopropylcinchoninic acid (VIII) was obtained, and yielded on decarboxylation the rather unstable 2-cyclopropylquinoline (IX). Both substances, and those obtained in a similar way from

substituted isatins, belong to a class of compounds hitherto unknown.

3. Pfitzinger reactions with aromatic ketones. In this work, a number of diversely ring-substituted acetophenones, propiophenones, *n*-butyrophenones, and deoxybenzoins were submitted to Pfitzinger condensations. Once more it was observed that, under normal conditions of reaction (ethanol medium and 24 hours' heating), no sizable amounts of einchoninic acids were obtained with the ketones $\operatorname{ArCO}(\operatorname{CH}_2)_n\operatorname{CH}_3$ when *n* was more than two. A similar steric hindrance was noticed with *n*-butyrophenones bearing a methyl or alkoxy group in the ortho position; thus, 2,4-dimethyl- (X), 2,5-dimethyl- (XI), 2,4,5-trimethyl- (XII), and 2,4-dimethoxy-*n*-butyrophenone (XIII) failed to give with isatin any sub-

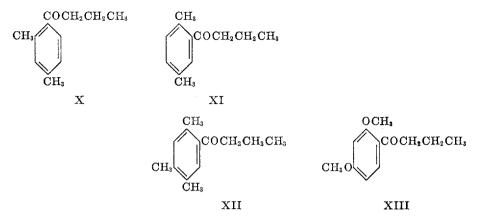
Ш	
ΞŢ	
AB	
-	

2-Articinchoninic Acids (XVI) COOH	
---------------------------------------	--

				ANALYSES	SES			
RADICAL AR	R	м.р., °С.	Calc'd	P.	Found	pg	FORMULA	STARTING KETONE
			υ	H	υ	н		
4-Biphenylyl	CH,	303-304	81.4	5.0	81.3	5.3	$C_{23}H_{17}NO_2$	4-Propionylbiphenyl
4-Biphenylyl	C_2H_5	>310	81.6	5.4	81.4	5.5	$C_{24}H_{19}NO_2$	4-n-Butyroylbiphenyl
6-Tetralyl	CH_{s}	254 - 255	79.5	6.0	79.2	6.2	$C_{21}H_{19}NO_2$	6-Propionyltetralin
6-Tetralyl	$C_{2}H_{5}$	dec. > 300	79.8	6.3	79.9	6.4	$C_{22}H_{21}NO_2$	6-n-Butyroyltetralin
4-Tolyl	CH ₃	>305	78.0	5.4	7.77	5.4	$C_{18}H_{15}NO_2$	4-Methylpropiophenone
4-Tolyl	C ₈ H ₅	>310	78.4	5.8	78.1	6.0	$C_{19}H_{17}NO_2$	4-Methyl-n-butyrophenone
3,4-Dimethylphenyl	н	209-210	78.0	5.4	77.8	5.3	$C_{18}H_{15}NO_2$	3,4-Dimethylacetophenone
2,5-Dimethylphenyl	Η	200-201	78.0	5.4	6.77	5.6	C ₁₈ H ₁₅ NO ₂	2,5-Dimethylacetophenone
2,5-Dimethylphenyl	CH:	301	78.4	5.8	78.3	6.0	$C_{19}H_{17}NO_2$	2,5-Dimethylpropiophenone
2,4-Dimethylphenyl	CH,	>305	78.4	5.8	78.3	5.9	C ₁₉ H ₁₇ NO ₂	2,4-Dimethylpropiophenone
4-Ethylphenyl	Н	190	78.0	5.4	77.8	5.7	C ₁₈ H ₁₆ NO ₂	4-Ethylacetophenone
4-Ethylphenyl	CH3	dec. > 290-292	78.4	5.8	78.4	6.0	C ₁₉ H ₁₇ NO ₂	4-Ethylpropiophenone
4-Ethylphenyl	C_2H_5	296	78.7	6.2	78.6	6.3	C20 H19 NO2	4-Ethyl- <i>n</i> -butyrophenone
4-Isopropylphenyl	Η	195	78.4	5.8	78.2	6.1	C ₁₉ H ₁₇ NO ₂	4-Isopropylacetophenone
4-Isopropylphenyl	CH,	297	78.7	6.2	78.5	6.5	C ₂₀ H ₁₉ NO ₂	4-Isopropylpropiophenone
4-Isopropylphenyl	C ₃ H,	267	79.0	6.6	78.7	6.8	C21H21NO2	4-Isopropyl-n-butyrophenone
4-tert-Butylphenyl	CH _s	298	79.2	6.3	79.0	6.5	$C_{21}H_{20}NO_2$	4-tert-Butylpropiophenone
2,4,5-Trimethylphenyl	CH,	313	78.7	6.2	78.5	6.4	C ₂₀ H ₁₀ NO ₂	2,4,5-Trimethylpropiophenone
4-Methyl-I-naphthyl	CH,	>305	81.2	4.6	81.0	4.9	C22H18NO2	4-Methyl-1-propionaphthone
3-Pyrenyl	CH3	>310	83.7	4.4	83.4	4.3	$C_{27}H_{17}NO_3$	3-Propionylpyrene
3-Pyrenyl	C_2H_5	>310	83.8	4.7	83.5	4.8	$C_{28}II_{19}NO_2$	3-n-Butyroylpyrene
4-Chlorophenyl	Н	241-242	67.7	3.5	67.5	3.8	C16H10CINO2	4-Chloroacetophenone

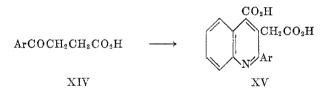
1214

BUU-HOÏ, ROYER, XUONG, AND JACQUIGNON


4-Chlorophenyl C ₂ H ₅ 4-Bromophenyl H 3.4-Dichloronhenvl H		010-011	0.00	4.0	6X.3	4	CrHr,CINO,	4-Chloropropiophenone
envl]₂H₅	310	69.3	4.5	69.2	4.4	C ₁₈ H ₁₄ CINO ₂	4-Chloro-n-butyrophenone
		250	58.5	3.0	58.2	3.2	C ₁₆ H ₁₀ BrNO ₂	4-Bromoacetophenone
		258	60.4	2.8	60.3	3.0	C16H,Cl2NO2	3,4-Dichloroacetophenone
4-Bromophenyl C	ЛI,	>320	59.6	3.5	59.5	3.3	$C_{17}H_{12}BrNO_2$	4-Bromopropiophenone
	$\lambda_2 H_5$	329-330	60.7	3.9	60.4	3.8	C ₁₈ H ₁₄ BrNO ₂	4-Bromo-n-butyrophenone
	Ŧ	222	73.7	5.1	73.8	5.3	C ₁₈ H ₁₅ NO ₃	4-Acetylphenetole
	ЭН,	302	74.3	5.5	74.0	5.8	C ₁₉ H ₁₇ NO3	4-Propionylphenetole
	$C_{2}H_{5}$	305	74.8	5.9	74.6	6.0	$C_{20}H_{19}NO_3$	4-n-ButyroyIphenetole
	J ₆ H ₅	295	77.6	6.4	77.4	6.2	$C_{24}H_{24}NO_3$	4-Phenacetylphenetole
4-Methylmercaptophenyl C	CH.	305	6.9.9	4.9	69.6	4.8	C ₁₈ II ₁₅ NO ₂ S	4-PropionyIthioanisole
	CH ₂ CO ₂ H	325	67.6	4.2	67.3	4.4	C ₁₉ H ₁₅ NO ₄ S	β -(4-Methylmercaptobenzoyl)-
								propionic acid
4-Ethylmercaptophenyl H		195	6.9	4.9	70.0	4.6	C ₁₈ H ₁₅ NO ₂ S	4-Acctylthiophenetole
	CH3	278	70.6	5.3	70.5	5.4	C ₁₉ H ₁₇ NO ₂ S	4-Propionylthiophenetole
4-Ethylmercaptophenyl C	$h_{2}H_{5}$	269	71.2	5.6	71.0	5.5	$C_{20}H_{19}NO_2S$	4-n-Butyroylthiophenetole
		203	77.1	4.6	0.77	4.9	C22H16NO3	4-Phenoxyacetophenone
	JH,	303	77.5	5.0	77.3	5.1	C ₂₃ H ₁₈ NO ₃	4-Phenoxypropiophenone
4-Phenoxyphenyl C	2,H5	282	77.8	5.4	77.5	5.4	$C_{24}H_{20}NO_3$	4-Phenoxy-n-butyrophenone
	J ₆ H ₅	283	77.4	4.3	77.1	4.5	C ₂₂ H ₁₅ NO ₃	4-Phenaectylphenoxybenzene
4-Phenylmercaptophenyl H		215	73.9	4.2	73.8	4.1	C ₂₂ H ₁₅ NO ₂ S	4-Phenylmercaptoacetophe-
								none
4-Phenylmercaptophenyl C	CH ₃	275	74.3	4.5	74.0	4.8	C ₂₃ H ₁₇ NO ₂ S	4-Phenylmercaptopropiophe-
								none
	C ₆ H,	289	77.5	4.3	77.3	4.1	$C_{28}H_{19}NO_2S$	4-Phenacetyldiphenyl sulfide
		237	7.77	4.7	77.4	5.0	C22HINO3	4'-Methoxy-4-acetylbiphenyl
4'-Methoxy-4-biphenylyl C	лп _а	295	78.0	5.1	9.77	5.0	C24H10NO3	4'-Methoxy-4-propionylbi-
				a of Arigana dae				phenyl

PFITZINGER REACTION

TABLE IV 2-Artl-6-bromocinchoninic Acids


4-Bromophenyl	CH,	325	48.5	2.6	48.2	2.8	48.5 2.6 48.2 2.8 $C_{IT}H_{11}Br_{2}NO_{2}$	4-Bromopropiophenone
4-Bromophenyl	CH ₂ CO ₂ H	307	46.5	2.4	46.5 2.4 46.2 2.6	2.6	$\mathrm{C_{18}H_{11}Br_2NO_4}$	β -(4-Bromobenzoyl)propionic acid
4-Bromophenyl	C_2H_5	>310	49.6	3.0	49.6 3.0 49.5 3.3	3.3	$C_{18}H_{13}Br_2NO_3$	4-Bromo-n-butyrophenone
4-Bromophenyl	C,H,	>310	54.7	2.7	2.7 54.8 2.8	2.8	$C_{22}H_{13}Br_2NO_2$	4-Phenacetylbromobenzene
4-Iodophenyl	Н	277–278	42.2		1.9 42.0	2.2	-	4-Iodoacetophenone
3,4-Dichlorophenyl	Η	252	48.4		48.2	2.3	C ₁₆ H ₈ BrCl ₂ NO ₂	3,4-Dichloroacetophenone
2,4-Dimethoxyphenyl	$C_{6}H_{5}$	297 - 298		3.9	62.0 4.0	4.0	$C_{24}H_{18}BrNO_4$	4-Phenacetyl-1, 3-dimethoxy-
				-				benzene
3,4-Dimethoxyphenyl	C_2H_5	240	57.7	4.3	57.7	4.2	57.7 4.3 57.7 4.2 $C_{20}H_{18}BrNO_{4}$	4-n-Butyroylveratrole

stantial amount of the expected cinchoninic acids, even when the duration of reaction was extended to 36 hours.

Similar observations were made with the ketones $ArCOCH_2R$ in whose molecules Ar is a polycycylic radical, such as the 4-xenyl, 1,2,3,4-tetrahydro-2naphthyl, 4-methyl-1-naphthyl, 5-acenaphthyl, 3-pyrenyl, and 4-fluoranthyl radicals.

It should be noted that β -aroylpropionic acids (XIV) were found highly reactive, and readily yielded 3-carboxymethyl-2-arylcinchoninic acids of the general formula (XV).

The numerous new arylcinchoninic acids obtained in the course of this study are listed in Table III (2-arylcinchoninic acids of formula XVI, bearing no substitution at the position 6) and Table IV (6-bromo-2-arylcinchoninic acids of formula XVII). The corresponding quinolines are listed along with their picrates in Table V (2-arylquinolines of formula XVIII), and Table VI (6-bromo-2arylquinolines of formula XIX). Similar 6-chloro- and 6-methyl-2-arylcinchoninic acids are described in the experimental part, and in Table VII are recorded several cinchoninic acids derived from thiophene.

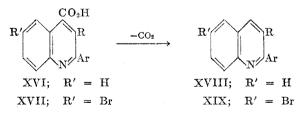


TABLE V 2-Arylquinolines

RADICAL AR	R	ы.р., °С.	ANALY	ses N	м.р., °С.,	
RADICAL AR		м.р., С.	Calc'd	Found	of picrate	FORMULA
4-Biphenylyl	CH3	121	4.7	4.5	230	$C_{22}H_{17}N$
4-Biphenylyl	$C_{2}H_{5}$	100	4.5	4.4	211	$C_{23}H_{19}N$
6-Tetralyl	CH ₈	70	5.1	4.8		$C_{20}H_{19}N$
6-Tetralyl	C ₂ H ₅	b.p. 275-280°/16 mm.	4.9	5.0	196-197	$C_{21}H_{21}N$
3,4-Dimethylphenyl	H	90-91	6.0	5.9		$C_{17}H_{15}N$
2,5-Dimethylphenyl	H	60	6.0	6.1	179	$C_{17}H_{15}N$
4-Isopropylphenyl	Н	50	5.7	5.5	190	$C_{18}H_{17}N$
4-Isopropylphenyl	CH:	61	5.4	5.2	193	$C_{19}H_{19}N$
4-tert-Butylphenyl	CH_{3}	66	5.1	5.0		$C_{20}H_{21}N$
	0110	b.p. 250-260°/15 mm.	0.1	0.0		020112110
4-Tolyl	CH_3	59	6.0	6.1	220	$C_{17}H_{15}N$
2,4,5-Trimethyl-	CH_{3}	b.p. 230°/13 mm.	5.4	5.2	212-213	$C_{19}H_{19}N$
phenyl		P. 400 / 10 mm.	0.1			▲18±±18±1
4-Methyl-1-naphthyl	CH_3	liquid b.p. (270-272°/	4.9	4.9	224	$C_{21}H_{17}N$
	U113	13 mm.)	±+9	***	Tea	₩2111117×1
4 Chlorophenyl	н	10 1112	5.8	5.5	192-193	$C_{15}H_{10}ClN$
4-Chlorophenyl	CH3	92	5.5	5.3		$C_{16}H_{12}CIN$
4-ChlorophenyI	C_2H_5	42	5.2	5.0	181	$C_{16}H_{12}CIN$ $C_{17}H_{14}CIN$
4-Bromophenyl	H	123-124	4.9	$\frac{1.0}{4.6}$	181-182	
3,4-Dichlorophenyl	H	123-124	5.1	1	204	$C_{15}H_{10}BrN$
4-Bromophenyl	CH_{3}	112 108	i	5.0		$C_{15}H_9Cl_2N$
	-		4.7	4.5	195-196	$C_{16}H_{12}BrN$
4-Bromophenyl	C_2H_5	62	4.5	$\frac{4.2}{5}$	192	$C_{17}H_{14}BrN$
4-Ethoxyphenyl	H	127	5.6	5.5	218	$C_{17}H_{15}NO$
4-Ethoxyphenyl	CH ₃	92	5.3	5.0	177	$C_{18}H_{17}NO$
4-Ethoxyphenyl	C_2H_5	liquid	5.1	5.1	190	$C_{19}H_{19}NO$
4-Ethoxyphenyl	C_6H_5	100	4.3	4.2	192	$C_{23}H_{19}NO$
4-Methylmercapto-	CH_{3}	86	5.3	5.0	180	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{NS}$
phenyl						
4-Ethylmercapto-	CH_3	70	5.0	4.8	186	$\mathrm{C}_{18}\mathrm{H}_{17}\mathrm{NS}$
phenyl			Į			
4-Ethylmercapto-	C_2H_5	liquid	4.8	4.5	184	$\mathrm{C}_{19}\mathrm{H}_{19}\mathrm{NS}$
phenyl						
4-Phenoxyphenyl	H	121	4.7	4.5		$C_{21}H_{15}NO$
4-Phenoxyphenyl	CH_3	91	4.5	4.4		$C_{22}H_{17}NO$
4-Phenoxyphenyl	$C_{2}H_{5}$	75	4.3	4.1	188	$C_{23}H_{19}NO$
4-Phenoxyphenylª	C_6H_5	109	3.7	3.4	201	$C_{27}H_{19}NO$
1-Phenylmercapto-	\mathbf{H}	119	4.4	4.1		$C_{21}H_{15}NS$
phenyl						
4-Phenylmercapto-	CH_{s}	76	4.3	4.2	175	$\mathrm{C}_{22}\mathrm{H}_{17}\mathrm{NS}$
phenyl	•					
4-Phenylmercapto-	C_6H_5	62	3.6	3.3	192	$\mathrm{C}_{27}\mathrm{H}_{19}\mathrm{NS}$
phenyl						0 11
f'-Methoxy-4-bi-	\mathbf{H}	219	4.5	4.6	202	$\mathrm{C}_{22}\mathrm{H}_{17}\mathrm{NO}$
phenylyl						- 11 - 11 - 1 - C
L'-Methoxy-4-bi-	CH_{3}	149	4.3	4.1	180	$C_{23}H_{19}NO$
phenylyl	U113	+ 10	710		100	~234+19+1 V
-Ethylphenyl	н	50	6.0	5.9	196-197	$C_{17}H_{15}N$
I-Ethylphenyl	CH_3	liquid (220-225°/15	$5.0 \\ 5.7$			1 C C C C C C C C C C C C C C C C C C C
-mony ipnenyi	0113	mm.)	0.7	5.7	191-192	$\mathrm{C}_{18}\mathrm{H}_{17}\mathrm{N}$
Fthislahoned	CH	,	E 4	50	100 100	счу
-Ethylphenyl	$\mathrm{C}_{2}\mathrm{H}_{5}$	liquid (228–230°/15	5.4	5.2	182-183	$\mathrm{C}_{19}\mathrm{H}_{19}\mathrm{N}$
		mm.)				

^a The bromhydrate had m.p. 215°.

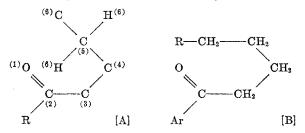
The alkyl aryl ketones used in this work were mostly known substances, and were mostly prepared by Friedel-Crafts reactions; the new ones are reported in the experimental section. Aliphatic ketones were prepared by Grignard reactions of appropriate alkylmagnesium bromides on aliphatic nitriles.

TABLE VI

2-ARYL-6-BROMOQUINOLINES (XIX)

RADICAL AR	R	м.р., °С.	ANALY	ses N	м.р., °С,,	FORMULA
			Calc'd	Found	Of PICRATE	
4-Biphenylyl	н	222	3.9	4.0	224-225	C21H14BrN
4-Biphenylyl	CH_3	196	3.7	3.5		$C_{22}H_{16}BrN$
4-Biphenylyl	C_2H_5	172	3.6	3.5	215	$C_{23}H_{18}BrN$
6-Tetralyl	C_2H_5	97	3.8	3.6	217-218	$C_{21}H_{20}BrN$
6-Tetralyl	H	133	4.1	4.0	212	C ₁₉ H ₁₆ BrN
6-Tetralyl	CH3	123	4.0	4.1	216	C20H18BrN
2-Phenyl	CH_{3}	129	4.7	4.5		$\mathrm{C_{16}H_{12}BrN}$
3,4-Dimethylphenyl	H	135	4.5	4.3	206 - 207	$C_{17}H_{14}BrN$
2,4-Dimethylphenyl	н	98	4.5	4.3	194	$C_{17}H_{14}BrN$
2,4-Dimethylphenyl	CH_3	122	4.3	4.4	209	$C_{18}H_{16}BrN$
2,5-Dimethylphenyl	H	124	4.5	4.4	205	$C_{17}H_{14}BrN$
2,5-Dimethylphenyl	CH_3	109	4.3	4.1	192	$C_{18}H_{16}BrN$
4-Isopropylphenyl	CH_3	130	4.1	4.0	185	$C_{19}H_{18}BrN$
4-Isopropylphenyl	$C_{2}H_{5}$	93	4.0	3.8	204	$\mathrm{C}_{20}\mathrm{H}_{20}\mathrm{BrN}$
4-tert-Butylphenyl	CH3	132	4.0	3.9	154	$\mathrm{C}_{20}\mathrm{H}_{20}\mathrm{BrN}$
4-Isopropylphenyl	H	143	4.3	4.3	194	$C_{13}H_{16}BrN$
4-Methyl-1-naphthyl	CH3	181	3.9	3.6	228	$C_{21}H_{16}BrN$
3-Pyrenyl	H	205	3.4	3.5	240-242	$C_{25}H_{14}BrN$
4-Chlorophenyl	\mathbf{H}	177	4.4	4.2		C ₁₅ H ₉ BrClN
4-Chlorophenyl	CH_3	160	4.2	4.0	206-207	C ₁₆ H ₁₁ BrClN
4-Chlorophenyl	C_2H_5	147	4.0	4.0	196	C ₁₇ H ₁₃ BrClN
4-Chlorophenyl	C ₆ H ₅	161	3.5	3.6	194	$C_{21}H_{13}BrClN$
4-Bromophenyl	H	188	3.9	3.6	207	$C_{15}H_{19}Br_2N$
4-Bromophenyl	CH_{3}	189-190	3.7	3.5	163	$\mathrm{C_{16}H_{11}Br_{2}N}$
4-Bromophenyl	C₂H₅	110	3.6	3.6		$\mathrm{C}_{17}\mathrm{H}_{13}\mathrm{Br}_{2}\mathrm{N}$
4-Bromophenyl	$C_{\delta}H_{\delta}$	171 - 172	3.2	3.0	192 - 193	$\mathrm{C}_{21}\mathrm{H}_{13}\mathrm{Br}_{2}\mathrm{N}$
3,4-Dichlorophenyl	H	169	3.9	4.1	192	$C_{15}H_{8}BrCl_{2}N$
2,4-Dimethoxyphenyl	C_6H_5	89	3.5	3.4	202203	$C_{23}H_{13}BrNO_{2}$
4-Ethylphenyl	CH3	115	4.2	4.0		C ₁₈ H ₁₆ BrN
4-Iodophenyl	\mathbf{H}	185	3.4	3.2	197 - 198	C15H9BrIN

Theory of steric hindrance in Pfitzinger reactions. Any such theory must account primarily for the sharp decrease in reactivity observed in passing from the ketones of the *n*-butyrophenone series to those of the *n*-valerophenone group and those with longer chains. A satisfactory explanation can be found in extending to ketones a structural theory proposed by Smith and McReynolds (16) to account


	FROM THIOPHENE
TABLE VII	ACIDS DERIVED FROM
	6-BROMOCINCHONINIC

	STARTING KETONE		S 2,5-Dimethyl-3-acetylthiophene	S 2-Acetylthiophene	² S 2-Acetylthiophene	0 ₂ S 5-Chloro-2-acetylthiophene	0 ₂ S 5-Chloro-2-propionylthiophene		S 5-Bromo-2-acetylthiophene		2. 2-Bromo-2-n-butyroylthiophene	2.5 5-Bromo-2-phenacetylthiophene
	FORMULA		C ₁₆ H ₁₂ BrNO ₂ S	C ₁₄ H ₈ BrNO ₂ S	C ₁₅ H ₁₀ BrNO ₂ S	C ₁₄ H ₇ BrCINO ₂ S	C ₁₅ H ₉ BrCINO ₂ S	C ₁₆ H ₁₁ BrClNO ₂ S	C ₁₄ H ₇ Br ₂ NO ₂ S	C ₁₅ H ₉ Br ₂ NO ₂ S	C ₁₆ H ₁₁ Br ₂ NO ₂ S	$C_{20}H_{11}Br_2NO_2S$
	pu	н	3.6	2.5	3.2	2.2	2.5	3.1	2.0	2.2	2.8	2.4
KSES	Found	ပ	52.8	50.3 2.3 50.0	51.4	45.3	41.1 2.4 47.0 2.5	48.4 2.8 48.2	40.6 1.6 40.3	42.0	43.2	48.8
ANALYSES	P,	Н	3.3	2.3	2.9	1.9	2.4	2.8	1.6	42.2 2.1	2.5	2.2
	Calc'd	ပ	53.0	50.3	51.7	45.6 1.9	41.1	48.4	40.6	42.2	43.5	49.1
	м. ^{р.} , °С.		234-235 53.0 3.3 52.8 3.6	271-272	290-291	270-271	278-279	281-282	247 - 248	284-285	260-261 43.5 2.5 43.2 2.8	274-275 49.1 2.2 48.8 2.4
	Я		H	Η	CH ₃	Н	CH3	$C_{2}H_{5}$	Η	CH3	C_2H_5	C ₆ H ₅
	radical Ar		2,5-Dimethyl-3-thienyl	2-Thienyla	2-Thienyl ⁶	5-Chloro-2-thienyl	5-Chloro-2-thienyl	5-Chloro-2-thienyl	5-Bromo-2-thienyl	$5 ext{-Bromo-2-thienyl}^{\circ}$	5-Bromo-2-thienyl	$5 ext{-Bromo-2-thieny}I^d$

N, 4.8.). ^b 6-Bromo-3-methyl-2-(2-thienyl)quinoline had m.p. 90° (Found: N, 4.5. Calc'd for C₁₄H₁₀BrNS: N, 4.6.). ^e 6-Bromo-3-methyl-2-(5-bromo-2-thienyl)quinoline crystallized from ethanol as yellow needles, m.p. 147–148° (Found: N, 3.5. Calc'd for C₁₄H₃Br₂NS: N, 3.6.). 6-Bromo-2-(5-bromo-2-thienyl)quinoline had m.p. 175–176° (Found: N, 3.6. Calc'd for C₁₃H₇Br₂NS: N, 3.9). ^a All the Pfitzinger reactions with thiophene ^a 6-Bromo-2-(2-thienyl)quinoline crystallized from methanol as slender, yellowish needles, m.p. 124° (Found: N, 4.6. Cale'd for C12HsBrNS: ketones were run for four hours only; otherwise, extensive decomposition takes place.

PFITZINGER REACTION

for the rate decrease of esterification of *n*-butyric acid as compared with that of propionic acid, and recently extended by Newman (17). In this theory, *n*butyric acid and similar compounds are to be represented by coiled structures [A], and, according to Newman's rule of six, "in reactions involving addition to an unsaturated function, the greater the number of atoms in the six position, the greater will be the steric effect". Ketones such as *n*-valerophenone and higher homologs could be represented by coiled structures of type [B], and their observed behavior in Pfitzinger reactions can be readily accounted for on that basis.

Biological tests. The various cinchoninic acids and quinoline bases described in this work have been tested for potential carcinogenic activity by Dr. Zajdela of this Institute; no substance has been found active, although some produced degenerative changes in the liver.

EXPERIMENTAL

Pfitzinger reactions of n-propyl hexyl ketone. (a) With isatin. A solution of 6 g. of the ketone, 5.9 g. of isatin, and 6.9 g. of potassium hydroxide in 25 ml. of ethanol was refluxed for 24 hours. After distillation of most of the solvent, water was added, the neutral impurities were removed by ether extraction, and the aqueous layer was acidified with acetic acid. Yield, 6 g. of a mixture of cinchoninic acids, from which the higher-melting component (possibly 3-ethyl-2-n-hexylcinchoninic acid, colorless needles, m.p. 108-109°) could be isolated by repeated crystallization from methanol.

Anal. Cale'd for C₁₈H₂₃NO₂: C, 75.8; H, 8.1.

Found: C, 75.5; H, 8.2.

(b) With 5-bromoisatin. A solution of 3.5 g. of the ketone, 5 g. of 5-bromoisatin, and 4 g. of potassium hydroxide in 25 ml. of ethanol was treated as above. Yield, 5.5 g. of a mixture of bromocinchoninic acids, from which the higher-melting isomer, possibly β -bromo- β -ethyl- β -n-hexylcinchoninic acid, could be isolated by fractional crystallization from methanol (colorless needles, m.p. 162-163°).

Anal. Cale'd for C₁₈H₂₂BrNO₂: C, 59.3; H, 6.0.

Found: C, 59.2; H, 6.2.

7-Bromo-4-methyl-1,2,3,4-tetrahydroacridine-9-carboxylic acid was similarly prepared in 80% yield from 2 g. of 5-bromoisatin, 2 g. of 2-methylcyclohexanone, and 2 g. of potassium hydroxide. It crystallized from ethanol as yellowish needles, m.p. 272-273° (decomp. above 260°).

Anal. Calc'd for C₁₅H₁₄BrNO₂: C, 56.3; H, 4.4.

Found: C, 56.0; H, 4.2.

The *picrate* of its decarboxylation product (7-bromo-4-methyl-1,2,3,4-tetrahydroacridine) crystallized from ethanol as yellow prisms, m.p. 196-197°.

Anal. Cale'd for C₂₀H₁₇BrN₈O₇: N, 8.6. Found: N, 8.7.

7-Chloro-4-methyl-1,2,3,4-tetrahydroacridine-9-carboxylic acid crystallized from methanol as silky, colorless needles, m.p. 224-225°.

Anal. Calc'd for $C_{16}H_{14}ClNO_2$: C, 65.3; H, 5.1. Found: C, 65.1; H, 5.2.

7-Bromo-4-ethyl-1,2,3,4-tetrahydroacridine-9-carboxylic acid was similarly prepared from 2-ethylcyclohexanone. It crystallized from methanol as yellowish needles, m.p. 298-299°. Anal. Calc'd for C₁₆H₁₆BrNO₂: C, 57.5; H, 4.8.

Found: C, 57.2; H, 5.0.

7-Bromo-4-ethyl-1,2,3,4-tetrahydroacridine, obtained from the above acid, crystallized from petroleum ether as slender, pale yellow prisms, m.p. 92°.

Anal. Cale'd for $C_{15}H_{16}BrN$: N, 4.8. Found: N, 4.8.

Pfitzinger condensation of β -naphthisatin with octan-2-one. A solution of 2 g. of β -naphthisatin, 2 g. of octan-2-one, and 1.7 g. of potassium hydroxide in 10 ml. of ethanol was refluxed for 24 hours; after dilution with water, ether extraction, and acidification with acetic acid, 2.4 g. of 2-n-hexyl-5,6-benzocinchoninic acid was obtained, crystallizing from ethanol as pale yellow needles, m.p. 245-246° (decomp. above 230°), identical with the product obtained from β -naphthylamine, pyruvic acid, and n-heptanal. Thermal decarboxylation afforded 2-n-hexyl-5,6-benzoquinoline, an oily base whose picrate crystallized from ethanol as silky yellow needles, m.p. 147°.

2-n-Nonyl-5,6-benzocinchoninic acid, similarly prepared from undecan-2-one, had m.p. 245-247° (decomp. above 230°), and was identical with a sample prepared from n-decanal, β -naphthylamine, and pyruvic acid.

6-Chloro-2-phenylcinchoninic acid was prepared in 90% yield from 5-chloroisatin, acetophenone, and potassium hydroxide in the usual way; colorless prisms (from water), m.p. 282°.

Anal. Cale'd for C₁₆H₁₀ClNO₂: C, 67.7; H, 3.5.

Found: C, 67.6; H, 3.8.

6-Chloro-2-phenylquinoline crystallized from methanol as silky colorless needles, m.p. 110-111° (picrate m.p. 189-190°).

Anal. Cale'd for C₁₅H₁₀ClN: N, 5.8. Found: N, 5.5.

6-Chloro-2-(p-tolyl)cinchoninic acid crystallized from aqueous methanol as colorless needles, m.p. 270-271°.

Anal. Cale'd for $C_{17}H_{12}$ ClNO₂: C, 68.6; H, 4.0.

Found: C, 68.4; H, 4.2.

6-Methyl-2-(p-chlorophenyl)cinchoninic acid crystallized from aqueous methanol as silky colorless prisms, m.p. 219-220°.

Anal. Cale'd for $C_{17}H_{12}CINO_2$: C, 68.6; H, 4.0.

Found: C, 68.3; H, 4.2.

6-Methyl-2-(p-chlorophenyl)quinoline crystallized from methanol as silky colorless needles, m.p. 164° (picrate m.p. 185-186°).

Anal. Calc'd for $C_{16}H_{12}ClN: N$, 5.5. Found: N, 5.2.

3,6-Dimethyl-2-(p-chlorophenyl)cinchoninic acid crystallized from methanol as colorless needles, which did not melt below 320° .

Anal. Cale'd for C₁₈H₁₄ClNO₂: C, 69.3; H, 4.5.

Found: C, 69.1; H, 4.4.

Friedel-Crafts acylations of diphenyl sulfide. (a) 4-Phenacetyldiphenyl sulfide was prepared in 75% yield in the usual way with phenacetyl chloride and aluminum chloride in carbon disulfide; it crystallized from methanol as shiny colorless leaflets, m.p. 105-106°.

Anal. Cale'd for C₂₀H₁₆OS: C, 78.9; H, 5.3.

Found: C, 78.6; H, 5.2.

(b) 4-Isobutyryldiphenyl sulfide was a mobile, colorless oil, b.p. 224-226°/12 mm., n_p^{23} 1.6234.

Anal. Calc'd for C₁₆H₁₆OS: C, 75.0; H, 6.3.

Found: C, 74.9; H, 6.3.

(c) 4-Caproyldiphenyl sulfide formed a pale yellow oil of unpleasant odor, b.p. $204-205^{\circ}/0.9 \text{ mm.}, n_{p}^{23.6}$ 1.6062, solidifying as colorless leaflets, m.p. $29-30^{\circ}$.

Anal. Cale'd for $C_{18}H_{20}OS: C$, 76.1; H, 7.0.

Found: C, 76.0; H, 7.2.

(d) 4-n-Octanoyldiphenyl sulfide was likewise a viscous, pale yellow oil, b.p. 219-220°/ 2 mm., $n_{\rm p}^{23}$ 1.5934, which on prolonged standing set to a colorless crystalline mass, m.p. 31-32°.

Anal. Cale'd for C₂₀H₂₄OS: C, 76.9; H, 7.7.

Found: C, 76.7; H, 7.7.

(e) 4-Benzoyldiphenyl sulfide crystallized from ethanol in slender colorless prisms, m.p. 70° .

Anal. Calc'd for $C_{19}H_{14}OS: C$, 78.6; H, 4.8.

Found: C, 78.4; H, 4.7.

(f) 4-(p-Methoxybenzoyl)diphenyl sulfide crystallized from ethanol in silky colorless needles, m.p. 81°.

Anal. Cale'd for C₂₀H₁₆O₂S: C, 75.0; H, 5.0.

Found: C, 74.9; H, 5.3.

Friedel-Crafts acylations of thiophenetole. The reactions were performed according to the von Auwers and Arndt procedure (18); 4-propionylthiophenetole had b.p. 178–180°/15 mm., and crystallized from methanol in large colorless prisms, m.p. 45°.

Anal. Cale'd for $C_{11}H_{14}OS: C, 68.0; H, 7.2.$

Found: C, 68.1; H, 7.0.

4-n-Butyrylthiophenetole had b.p. 189-190°/15 mm., and formed from methanol large colorless plates, m.p. 43°.

Anal. Calc'd for $C_{12}H_{16}OS: C$, 69.2; H, 7.7.

Found: C, 69.0; H, 8.0.

SUMMARY

1. The Pfitzinger reaction has been extensively investigated both as a method of preparation of quinoline derivatives, and with regard to the influence of steric hindrance.

2. A wide series of new cinchoninic acids and the corresponding quinoline bases, destined for biological testing, is recorded.

PARIS, V[®], FRANCE

REFERENCES

- (1) ROHDE, Heffter's Handbuch der experimentellen Pharmakologie, 2, 5 (Berlin 1920).
- (2) TRAUBE AND ROSENSTEIN, Biochem. Z., 95, 97 (1919).
- (3) BUU-HOÏ AND GUETTIER, Rec. trav. chim., 65, 502 (1946).
- (4) SHEAR, Am. J. Cancer, 36, 211 (1939).
- (5) BROWNING, GULBRANSEN, AND NIVEN, J. Pathol. Bacteriol., 42, 155 (1936).
- (6) See for instance, KENNAWAY, KENNAWAY, AND WARREN, Cancer Research, 2, 157 (1942);
 BADGER, et al., Proc. Roy. Soc., [B] 131, 170 (1942).
- (7) PFITZINGER, J. prakt. Chem., 56, 283 (1897).
- (8) BUU-HOÏ AND ROYER, J. Chem. Soc., 106 (1948).
- (9) BUU-Hoï, J. Chem. Soc., 795 (1946).
- (10) See for instance, BUU-HOI AND ROYER, Rec. trav. chim., 66, 308 (1947).
- (11) BUU-HOI AND CAGNIANT, Bull. soc. chim., 13, 123 (1946).
- (12) MUELLER AND STOBAUGH, J. Am. Chem. Soc., 72, 1598 (1950).
- (13) BAGARD, Bull. soc. chim., [4] 1, 358 (1907).
- (14) BORSCHE AND ROTTSIEPER, Ann., 377, 70 (1910).
- (15) BUU-HOÏ AND ROYER, Rec. trav. chim., 66, 300 (1947); BUU-HOÏ, J. Chem. Soc., 2882 (1949).
- (16) SMITH AND MCREYNOLDS, J. Am. Chem. Soc., 61, 1963 (1939).
- (17) NEWMAN, J. Am. Chem. Soc., 72, 4783 (1950).
- (18) VON AUWERS AND ARNDT, Ber., 42, 2712 (1909).